Решение домашних заданий

Из пункта А в пункт В, расстояние между которыми 60 км, одновременно выехали автобус и автомобиль. По дороге автомобиль остановился на 3 минуты, но в

1 января 0001 / Алгебра / Комментарии: 0

Из пункта А в пункт В, расстояние между которыми 60 км, одновременно выехали автобус и автомобиль. По дороге автомобиль остановился на 3 минуты, но в пункт В приехал раньше автобуса на 7 минут. Найдите скорости автобуса и автомобиля, если скорость автобуса в 1,2 раза меньше скорости автомобиля.

  •                              S                      t                                 V
    Автобус                60 км/час                                             у/х = 1,2  км/час

    Автомобиль          60 км/час           = +3 ми-7 мин              х км/час
                                                         = — 4мин= 115
    Составляем систему
    60х — 60у = 115
    ух=1,2

    900у-900х=ху
    у=1,2х                   Подставляем значения у  в ур.(1) . Получим:

    900(1,2х-х)-1,2х^2 =0
    180x- 1.2x^2=0
    x(1.2 x-180)=0
    x=0 — не является решением
    1,2х-180=0
    х=150
    у=1,2 *150
    у=180
    Ответ: (150;180 )км/час

  • 7-3=4 мин = 1/15 часа
    х км/ч — скорость автобуса
    1,2х км/ч — скорость автомобиля

    60/х — 60/(1,2х) = 1/15
    (72х — 60х) / 1,2х * х = 1/15
    12х / 1,2х * х = 1/15
    10/х = 1/15
    х = 150 км/ч — скорость автобуса
    1,2 * 150 = 180 км/ч — скорость автомобиля
    Ответ: 150 км/ч и 180 км/ч

Добавить комментарий